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Abstract

When faced with sequential decision-making problems, it is often useful to be able
to predict what would happen if decisions were made using a new policy. Those
predictions must often be based on data collected under some previously used
decision-making rule. Many previous methods enable sifiepolicy (or coun-
terfactual) estimation of thexpected/alue of a performance measure called the
return. In this paper, we take the rst steps towardsriversal off-policy estimator
(UnO)—one that provides off-policy estimates and high-con dence boundafpr
parameter of the return distribution. We use UnO for estimating and simultaneously
bounding the mean, variance, quantiles/median, inter-quantile range, CVaR, and
the entire cumulative distribution of returns. Finally, we also discuss UnO's appli-
cability in various settings, including fully observable, partially observable (i.e.,
with unobserved confounders), Markovian, non-Markovian, stationary, smoothly
non-stationary, and discrete distribution shifts.

1 Introduction

Problems requiring sequential decision-making are ubiquitsludy{hen online experimentation is
costly or dangerous, it is essential to conduct off-policy evaluation before deploying a new policy;
that is, one must leverage existing data collected using some policslled a behavior policy)

to evaluate a performance metric of another polidgalled the evaluation policy). For problems
with high stakes, such as in terms of heahbB][or nancial assets88], it is also crucial to provide
high-con dence bounds on the desired performance metric to ensure reliability and safety.

Perhaps the most widely studied performance metric in the off-policy setting is the expected return
[83]. However, this metric can be limiting for many problems of interest. Safety-critical applications,
such as automated healthcare, require minimizing the chances of risk-prone outcomes, and so
performance metrics such as value at risk (VaR) or conditional value at risk (CVaR) are more
appropriate 49, 14]. By contrast, applications like online recommendations are subject to noisy
data and call for robust metrics like the median and other quanglesifp order to improve

user experiences, applications involving direct human-machine interaction, such as robotics and
autonomous driving, focus on minimizing uncertainty in their outcomes and thus use metrics like
variance and entropybP, 84]. Recent work in distributional reinforcement learning (RL) have
also investigated estimating the cumulative distribution of retufna4] and its various statistical
functionals [6]. While it may even be bene cial to use all of these different metrics simultaneously

to inform better decision-making, even individually estimating and bounding any performance metric,
other than mean and variance, in #fépolicy settinghas remained an open problem.

This raises the main question of interedbw do we develop a universal off-policy method—one that
can estimate any desired performance metrics and can also provide nite-sample con dence bounds
that hold simultaneously with high probability for those metrics?
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Prior Work: Off-policy methods can be broadly categorized as model-based or mode88ee |
Model-based methods typically require strong assumptions on the parametric model when statistical
guarantees are needed. Further, using model-based approaches to estimate parameters other than the
mean can also require estimating thistribution of rewards foreverystate-action pair in order to

obtain the complete return distribution for any policy.

By contrast, model-free methods are applicable to a wider variety of settings. Unfortunately, the
popular technique of usinighportance-weighted returrig 1] only corrects for theneanunder the
off-policy distribution. Recent work by Chandak et dl8] provides a specialized extension to only
correct for the variance. Outside RL, works in the econometrics and causal inference literature have
also considered quantile treatmert§,[99] and inferences on counterfactual distributiol8, 20, 36],

but these methods are not developed for sequential decisions and do not provide any high-con dence
bounds with guaranteed coverage. Further, they often mandate stationarity, identically distributed
data, and full observability (i.e., no confounding).

Existing frequentist high-con dence bounds are not only speci cally designed for either the mean
or variance, but also hold onlgdividually [92, 45, 18]. Instead of frequentist intervals, a Bayesian
posterior distribution over the mean return and various statistics of that distribution can also be
obtained 105. We are not aware of any method that provides off-policy bounds or even estimates
for any parameter of the return, while also handling different domain settings that are crucial for RL
related tasks. Therefore, a detailed discussion of existing work is deferred to Apg&ndix

Contributions: We take the rst steps towardsumiversal off-policy estimato(UnO) that estimates
and bounds thentire distributionof returns, and then derives estimates and simultaneous bounds for
all parameters of interest. With UnO, we make the following contributions:

A. Foranydistributional parameter (mean, variance, quantiles, entropy, CVaR, CDF, etc.), we provide
an off-policy method to obtaifA.1) model-free estimatorgA.2) high-con dence bounds that have
guaranteed coveragémultaneouslyor all parameters and that, perhaps surprisingly, often nearly
match or outperform prior bounds speci cally designed for the mean and the variancél.8hd
approximate bounds using statistical bootstrapping that can often be signi cantly tighter.

B. The above advantages hold {@&:.1) fully observable and partially observable (i.e., with unob-
served confounders) settingB,2) Markovian and non-Markovian settings, afi#l3) settings with
stationary, smoothly non-stationary, and discrete distribution shifts in a policy's performance.

Limitations: Our method uses importance sampling and tfigfkequires knowledge of action
probabilities under the behavior policy (2) Any outcome under the evaluation policy should have a
suf cient probability of occurring under, and(3) Variance of our estimators scales exponentially
with the horizon length39, 57], which may be unavoidable in non-Markovian domai#é][

Notation: For brevity, we rstrestrict our focus to the stationary setting. In Sechione discuss
how to tackle non-stationarity and distribution shiftspartially observable Markov decision process
(POMDP) isatupl€S; O;A;P; ;R; ;dgo), whereS is the set of statef) is the set of observations,

A is the set of actions? is the transition function, is the observation functiolR is the reward
function, 2 [0;1] is the discount factor, andy is the starting state distribution. Although our
results extend to the continuous setting, for notational ease, we coSsileO, and the set of
rewards to be nite. Since the true underlying states are only partially observable, the resulting
rewards and transitions from one partially observed state to another are therefore also potentially
non-Markovian 80]. We write S;; O;; A¢, andR; to denote random variables for state, observation,
action, and reward respectively at tiheLet D be a data setH;)[L; collected usingpehavior
policies( i){L; , where eactH; denotes the@bserved trajectoryOg; Ao; (Ao0jOo); Ro; O1; :i:).
Notlceﬁhat an observed trajectory contaif{#\:jO;) and does not contain the statgs for all t. Let

G = i =0 R, be thereturn of H;, where8i; Gnin < G; < G nhax for some nite constants
Gmin andGmax, andT is a nite horizon length. LetG andH be the random variables for returns
and complete trajectories under any policyrespectively. Since the set of observations, actions, and
rewards are nite, and is nite, the total number of possible trajectories is nite. Létbe the nite

set of returns corresponding to these trajectories H ebe the set of all possible trajectories for
any policy . Sometimes, to make the dependence explicit, we w(it¢ to denote the return of
trajectoryh. Further, to ensure that sampledirare informative, we make a standard assumption
that any outcome under has suf cient probability of occurring under (see Appendip8.1 for
further discussion of assumptions in general),



Assumption 1. The seD contains independent (not necessarily identically distributed) observed
trajectories generated using i){L; , such that for some (unknowh)> O, ( i(ajo) <") =)
( (ajo)=0),forallo20;a2A;andi 2f1;2;::;ng.

2 ldea Summary

For the desired universal method, instead of considering each parameter individually, we suggest
estimating the entireumulative distribution functio(CDF) of returns rst:

8 2R; F()=Pr G

Any distributional parameter,(F ), can then be estimated from the estimat& of However, we
only have off-policy data from a behavior policy and the typical use of importance sampliffd][

only corrects for the mean return. To overcome this, we propose an estifaaioat uses importance
sampling from theperspective of the CDFo correct for theentiredistribution of returns. The CDF

estimatef,, is then used to obtain a plug-in estimatdi©,, ) for any distributional parameter(F ).

Next, we show that this CDF-centric perspective provides the additional advantage that, if we can
compute & con dence band : R! 2R such that

Pr 8 2R; Pr G 2F() 1 ;

then al upper (or lower) high-con dence bound on any parametéF, ), can be obtained by
searching for a functioR that maximizes (or minimizes)(F) and8 2 RhasF( )2 F ().

3 UnO: Universal Off-Policy Estimator

In the on-policysetting, one approach for estimating any parameter of retGrngnight be to rst
estimate itcumulative distributio= and then use that to estimate its parametgt ). However,
doing this in the off-policy setting requires additional consideration astitiezdistribution of the
observed returns needs to be adjusted to estifateénce the data is collected using behavior policies
that can be different from the evaluation policy

We begin by observing th& 2 R;F ( ) can be expanded using the fact that the probability that
the returnG equalsx is the sum of the probabilities of the trajectortés whose return equabs

X X X
F()=Pr(G )= Pr(G = x)= Pr(H = h)ligh)3=xg (1)
X2X X X2X ;X h2H

wherels =1 if A istrue and 0 otherwise. Now, observing that the indicator function can be one for
at most a single value less tharasg(h) is a deterministic scalar givem (1) can be expressed as,
X X X

F ()= Pr(H = h) Ltghy=xg = Pr(H =h) lign) 4
h2H x2X ix h2H

where the red color is used to highlight changes. Now, from Assumftés8 ; H H !

Pr(H = h)

X X
F ( ): Pr(H = h) 1fg(h) g — Pr(H = h)m 1fg(h) g (2)

h2H h2H

The form ofF () in (2) is bene cial as it suggests a way to not only perform off-policy corrections

for one speci ¢ parameter, as in prior work‘%}[ 18], but for theentire cumulative distribution
function(CDF) of returnG . Formally, let ; = J.T:O % denote the importance ratio fét;,
which is equal tdPr(H = h)=Pr(H = h) (see AppendiD).

Then, based or2}, we propose the following non-parametric and model-free estimatdt for

X0
8 2R Fa()= il o 3)
i=1

!Results can be extended to hybrid probability measures using Radon-Nikodym derivatives.



Figure 1: An illustration of return distributions for 7 and
. The CDF at any point v corresponds to the area un-
der the probability distribution up until ». Having order
statistics (G (;y)?_, of samples (G;)7_; drawn using 3, (3)
constructs an empirical estimate of the CDF for 7 (green
shaded region) by correcting for the probability of ob-
serving each G; using the importance-sampled counts of
G; < v. Additionally, weighted-IS (WIS) can be used as
in (27) for a variance-reduced estimator for F;.

T

-3

Probability

y . U, Retum
v G G Gu Gu' G "M

A

Figure 1 provides intuition for (3). In the following theorem, we establish that this estimator, Fn,
is unbiased and not only pointwise consistent, but also a uniformly consistent estimator of Fj,
even when the data D is collected using multiple behavior policies (/3;)7;. The proof (deferred
to Appendix D) also illustrates that by using knowledge of action probabilities under the behavior
policies, no additional adjustments (e.g., front-door or backdoor [70]) are required by F}, to estimate
F, even when the domain is non-Markovian or has partial observability (confounders).

Theorem 1. Under Assumption 1, F,, is an unbiased and uniformly consistent estimator of Fy,

Vv eR, Ep [Fn(y)} = F.(v), sléﬁ Fn(u) — F(v)] 2= 0.

Remark 1. Notice that the value of F},(v) can be more than one, even though Fy(v) cannot have a
value greater than one for any v € R. This is an expected property of estimators based on importance
sampling (IS). For example, the IS estimates of expected return during off-policy mean estimation can
be smaller or larger than the smallest and largest possible return when p > 1.

Having an estimator F,, of F;, any parameter ¢)(F;) can now be estimated using ¢ (F},). However,
some parameters like the mean /i, variance o2, and entropy H., are naturally defined using the
probability distribution dF’; instead of the cumulative distribution F.. Similarly, parameters like
the a-quantile ) and inter-quantile range (which provide tail-robust measures for the mean and
deviation from the mean) and conditional value at risk CVaR (which is a tail-sensitive measure) are
defined using the inverse CDF F; ! (a). Therefore, let (G ;) be the order statistics for samples

(Gi)j—; and G (o) = Guin. Then, we define the off-policy estimator of the inverse CDF for all
a € [0, 1], and the probability distribution estimator dF}, as,

M e) =min{g € (Ga)ina|Fulg) Z 0}, dBu(Gy) = Fu(Gra) = FulGii)s @)

where dF,L(V) = 0if v # G foranyi € (1,...,n). Using (4), we now define off-policy estimators
for parameters like the mean, variance, quantiles, and CVaR (see Appendix E.1 for more details on
these). This procedure can be generalized to any other parameter of F); for which a sample estimator

w(ﬁn) can be directly created using F,asa plug-in estimator for F..

R n R R n . R 2
pe(Fn) = 3 dFu(Gi)) G, o2(F) =3 dE,(Gy) (G(i) - MW(FH)> :
=1 =1

Q5 (Fy) = F, M (a), CVaR®(F,) :

n

1 e -
- Zl A5, (GG e, <qa(in)-

Remark 2. Let H; be the observed trajectory for the G; that gets mapped to G ;) when computing
the order statistics. Note that dﬁn(G(i)) equals p; /n for this H;. This implies that the estimator for

the mean, p,(Fy,), reduces exactly to the existing full-trajectory-based IS estimator [71].

Notice that many parameters and their sample estimates discussed above are nonlinear in F}; and
E,, respectively (the mean is one exception). Therefore, even though F}, is an unbiased estimator
of F;, the sample estimator, w(ﬁn), may be a biased estimator of ¢)(F;). This is expected behavior
because even in the on-policy setting it is not possible to get unbiased estimates of some parameters
(e.g., standard deviation), and UnO reduces to the on-policy setting when m = 3. However, perhaps
surprisingly, we establish in the following section that even when 1/J(Fn) is a biased estimator of
1 (Fy), high-confidence upper and lower bounds can still be computed for both F; and ¢ (F}).









5 Confounding, Distributional Shifts, and Smooth Non-Stationarities

A particular advantage of UnO is the remarkable simplicity with which the estimates and bounds
for F or (F ) can be extended to account for confounding, distributional shifts, and smooth
non-stationarities that are prevalent in real-world applicati@k [

Confounding / Partial Observability: Estimator, in (3) accounts for partial observability when

both and have the same observation set. However, in systems like automated loan approval
[94], data might have been collected using a behavior polidgpendent on sensitive attributes like

race and gender that may no longer be allowable under modern laws. This can make the available
observation®, for an evaluation policy different from the observation§, for , which may also

have been a partial observation of the underlying true Sate

However, an advantage of many such automated systems (e.g., online recommendation, automated
healthcare, robotics) is the direct availability of behavior probabiliti¢sjO). In AppendixD,
we provide generalized proofs for all the earlier results, showing that acces6A®) allows

UnO to handle various sources of confounding even wBldéh O, without requiring any additional
adjustments. When; (AjO) is not available, we allude to possible alternatives in Appedix
Distribution Shifts: Many practical applications exhibit distribution shifts that might be discrete

or abrupt. One example is when a medical treatment developed for one demographic is applied to

another 87]. To tackle discrete distributional shifts, Bt andF @ denote the CDFs of returns
under policy inthe rst and the second domain, respectively. To make the problem tractable, similar
to prior work on characterizing distribution shifts(], we assume that the Kolmogorov-Smirnov

distance betweeR ™ andF @ is bounded.
Assumption 2. There exists 0, such thatsup F(l)( ) F(Z)( )
2R

Given dateD collected in the rst domain, one can obtain the bourdt andel) onF® asin
Sectiond. Now sinceF ® can differ fromF @ by at most at any point, we propose the following
bounds folr ® forall 2 R and show that they readily provide guaranteed coveragé(i%r

F@() =max©:FY() ); FO() =min(;FP( )+ ): (7)
Theorem 4. Under Assumptionsand2, 8 2 (0; 1], the con dence band de ned U?(Z) and Ffz)
provides guaranteed coverage 6f? . That is,Pr(8; F (2)( ) F(Z)( ) F+(2)( ) 1

Smooth Non-stationarity: The stationarity assumption is unreasonable for applications like online
tutoring or recommendation systems, which must deal with drifts of students' interests or seasonal
uctuations of customers' interest88, 88]. In the worst case, however, even a small change in the
transition dynamics can result in a large uctuation of a policy's performance and make the problem
intractable. Therefore, similar to the work of Chandak efHd], we assume that the distribution of
returns for any changes smoothly over the past episotiésL, and the episodes in the future. In
particular, we assume that the trenchf)( ) forall can be modeled using least-squares regression
using a nonlinear basis function: R! RY (e.g., the Fourier basis, which is popular for modeling
non-stationary trend<.p]).

Assumption 3. Forany ,9w 2 RY, suchthatgi 2 [LL + ] FO()= (i) w:

EstimatingF (*7) can now be seen as a time-series forecasting problem. Formally, for any key point
, let Ifrﬁ')( ) be the estimated CDF usirtj observed in episode From Theoreni, we know that

P () is an unbiased estimator 51('?( ); therefore (F{"( )L, is an unbiased estimate for the

underlying time-varying sequen¢5(')( )); - Now, using methods from time-series literature,

the trend of(lfrﬁ')( )\, can be analyzed to forecast™* )( ), along with itsCl s. In particular,

we propose usingild bootstrap[58, 26], which providesapproximateCl s with nite sample error

of O(L *72) while also handling non-normality and heteroskedasticity, which would occur when

dealing with IS-based estimates resulting from different behavior polidgs$ee Appendie.6for

more details. Finally, using the bounds obtained using wild bootstrap at multiple key points, an entire
con dence band can be obtained as discussed in Segtion









products are ubiquitous. However, the popular assumption of stationarity is seldom applicable to
these systems. In particular, personalizing for each user is challenging in such settings as interests of
a user for different items among the recommendable products uctuate over time. For an example, in
the context of online shopping, interests of customers can vary based on seasonality or other unknown
factors. To abstract such settings, in this domain the reward (interest of the user) associated with each
item changes over time. See Fig&r&op row) for visualization of the domain, for different “speeds”
(degrees of non-stationarity).

In all the settings with different speeds, a uniformly random policy was used as a behavior ptdicy
collect data forl000episodes. To test the ef cacy of UnO, when the future domain can be different
from the past domains, the evaluation policy was chosen to be a near-optimal policy for the future
episode:1000 + 1.

7 Conclusion

We have taken the rst steps towards developingizersal off-policy estimator(UnQ), closing the

open question of whether it is possible to estimate and provide nite-sample bounds (that hold with
high probability) forany parameter of the return distribution in th#-policy setting, with minimal
assumptions on the domain. Now, without being restricted to the most common and basic parameters,
researchers and practitioners can fully characterize the (potentially dangerous or costly) behavior of a
policy without having to deploy it.

There are many new questions regarding how UnO can be improved for pahtyationby further
reducing data requirements or weakening assumptions. Using UnO for pulicgvementlso
remains an interesting future direction. Subsequent to this work, Huang[é8athowed how
models can be used to obtain UnO-style doubly robust estimators along with its convergence rates in
the contextual bandit setting. This allows their method to also provide nite-sample uniform CDF
bounds for a broad class of Lipschitz risk functionals.
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A Notation

Symbol Meaning
D Data set of the observed trajectories
n Total number of observed trajectoriesDn
Evaluation policy
i Behavior policy for thé™ trajectory
i Importance ratio for the observed trajectbty
S State set
0,8 Observation set for the behavior policy and the evaluation policy, respectively
A Action set
P Transition dynamics : S Al (9)
R Reward functionR : S A ( R)
Observation function for behavior policy; S! ( O)
2 Observation function for the evaluation policy; : S O! (@)
Discounting factor
do Starting state distribution
T Finite horizon length
Hi, H i observed trajectory in the dataset and complete trajectory under poliegpectively
G, G Return observed in thd' trajectory in the dataset and return under any policyespectively
Gnin » Gmax | Minimum and maximum value of a return, respectively
F ;dF True CDF of returns under policy and its associated probability distribution, respectively
Fn, Fn Off-policy CDF estimator and weighted off-policy CDF estimator usingamples, respectively
F :F. Lower and upper bound on the CDF
F The set of all CDFs between the upper bound and the lower bounds
it K i™ key point and total number of key points, respectively
Value for de ning inverse CDF-based statistics
Generic functional for a distributional parameter/statistic
;o+ Lower and upper bounds for(F )
Failure rate for the bounds
Deval; Dyain | Evaluation and training split of the datag®t
Cl ;Cl. Lower and upper con dence bounds for a given random variable
Parameters that are used to constRict
A Euclidean area enclosed within
X i™ bootstrap resampled value for any random varidble
Some small value in Assumptidnand Assumptior, respectively
w, Regression weights and basis function for the assumption on smooth non-stationarity
L; Number of past and future episodes being considered in the smooth non-stationary setting

Table 1: List of symbols used in the main paper and their associated meanings.

B Broader Impact

While our estimators and bounds are both theoretically sound and intuitively simple, it is important

for a broader audience to understand the limitations of our method, assumptions being made, and
what can be done when these assumptions do not hold. Understanding these assumptions can also
help in mitigating any undesired biases in applications built around UnO and can thus avoid any
potential negative societal impacts. In the following, we brie y allude to possible alternatives when

the required assumptions are violated.

B.1 Discussion of Assumptions and Requirements of UnO

Knowledge of Subset Support: Through Assumptior, UnO requires that all the behavior policies
( i), have suf cient support for actions that have non-zero probability undd?articularly, it
requires that the (ajo) is bounded below by (an unknown)when (ajo) > 0. This ensures
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that importance ratios are bounded and thus simpli es analysis for UnO's consistency results and
constructing con dence intervals. This assumption is common both in the off-policy literature
[47, 104 105 and in real applications[7]

The above assumption is also equivalent to assuming bounded exponentiated-Renyi-divergence (for

= 1 ) between the probability distributions of trajectories under the behavior and the evaluation
policies pB1]. As the UnO's bound for the CDF uses Cls for the mean as a sub-routine, the above
assumption can be relaxed by using Cls for the mean that depend on Renyi-divergence for other
values of [61]. Similarly, consistency results for UnO rely upon nite variance, which can also be
achieved by instead assuming that the Renyi-divergence is bounded-far.

Alternatively, Assumptiorl can be relaxed to only absolute continuity by using methods that provide
valid Cls for the mean by clipping the importance weights. (See the work by Thomagd @t,al.
Theorem ] for removal of the upper bound on the importance weights when lower-bounding the
mean, and the work by Chandak et 8, Theorem } for removal of the upper bound on the
importance weights when upper-bounding the mean). Furthermore, prior work has also shown how
even the assumption of absolute continuity can in some cases be removed (See discussion around
Egn 8 in the appendix of the work by Thomas et[8ll]). If the supports for the behavior and

the evaluation policies are unequal, Thomas and Brur{@€]lalso present a technique to reduce
variance resulting from IS.

Further, WIS might also be helpful in relaxing the assumptions on the IS ratios. Speci cally, WIS-
based mean bounds3| can also be used along with the WIS-based UnO estinfaigrto get a valid
con dence band for the entire CDF.

Using multi-importance sampling (MIS), the subset support requiremerslifdr ;)iL, can be
relaxed to the requirement that theion of supportsinder the behavior polici€s )L, has suf cient
support P8, 67, 61]. MIS can also help in substantially reducing variance. However, this relaxation
requires an alternate assumption that a complete knowledge of all the behavior folijles, not

just the probabilities of the action executed using them, is available.

Knowledge of Action Probabilities under Behavior Policies( i), : UnO requires access to
the probability (ajo) (only the scalar probability value and not the entire poli¢yf the actions
available in the data sdb,, to compute the importance sampling ratiog3n Access to the probability

(ajo) is often available wheb is collected using an automated policy; however, it might not be
available in some cases, such as when decisions were previously made by humans.

When the probability (ajo) is not available, one natural alternative is to estimate it from the data and
use this estimate of(ajo) in the denominator of the importance ratios. This technique is also known

as regression importance sampling (RIS) and is known to provide biased but consistent estimates
for the mean441, 69 in the Markov decision process setting (MDP) setting. For URGY, ) is
analogous to mean estimationXf:=  1;s 4 ,forany . Therefore, the ndings of RIS can be

directly extended to UnO in the MDP setting, whé@e= O = S. In the following, we provide a
high-level discussion for the setting whelfajo) is not available and the states are partially observed,

« Partial observability with @ = O: In this setting, as (ajo) = (aje), one can use density
estimation on the available dafa, to construct an estimaté\r(ajo) of Pr(aje) = (aje) and use
RIS to get a biased but consistent estimatoffor Here, bias results from the estimation error in
A(ajo) but consistency follows as the tru¢ajo) can be recovered in the limit when! 1

In context of UnO, usiné‘(ajo) instead of (ajo) violates the unbiased condition B, , which was
necessary to obtain th& s and construdt . Therefore, high-con dence bounds with guaranteed
coverage cannot be obtained using UnO in this setting. However, point estimates and approximate
bootstrap bounds can still be obtained.

« Partial observability with ®@ 6 O: In this setting, using RIS will produce neither an unbiased nor
a consistept estimator fér . As D only hase and noto, at best it is only possible to estimate
Pr(aje) = ,,o (aix)Pr(xje) through density estimation using dda However, in general,
since (ajo) = Pr( ajo) 6 Pr( aje) we cannot even consistently estimate the denominator for
importance sampling unless some other stronger assumptions are made. See work by Namkoong
et al. [65], Tennenholtz et al[85], Bennett et al[9] and Kallus and ZhoU48] for possible
alternative assumptions and approaches to tackle this setting.
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Knowledge of Gmin ; Gmax:  To construct the CDF barfel, UnO requires knowledge @&, and
Gmax in (5). Notice from Figure? that knowingGmax helps in clipping thdower boundfor the
uppertail (LBUT) of F, which otherwise would have extended#d . Similarly, knowingGmin
helps in clipping theupper boundfor the lower tail (UBLT) of F, which otherwise would have
extended tol

Typically, even ifGmin or Gmax is not known, they can be obtainedRgin =(1 ) orRpmax=(1 ),
respectively, wher®min, andRnax are known nite lower and upper bounds for any individual
reward. Otherwise, knowledge &, or Gmax can be relaxed if the desired bound omoes not
depend on UBLT or LBUT, respectively. For example, observe from Figuhat (a) The lower
bound for the mean or quantile does not depend on LBUT. Analogously, if only an upper bound for
the mean or quantile is required, then UBLT is not needed. (b) The lower bound on CVaR depends
on UBLT, however, (for small values of) the upper bound on CVaR neither depends on LBUT nor
UBLT. (c) For an upper bound on variance, both LBUT and UBLT are required. However, for the
variance's lower bound, neither LBUT nor UBLT are required. See Figdoe intuition.

Knowledge of Function Class :  For the smoothly non-stationary setting, through Assumgjon
UnO requires access to the basis functionthat can be used with least-squares regression to

analyze the trend in the distributions of retu(ﬁé')( ), forany 2 R. In practice, one can use
suf ciently exible basis functions to model time-series trends (e.g., Fourier b&g]s [To avoid
over tting or under tting, one could also use goodness-of- t tests to select the functional cligs
the trend LL9].

Knowledge of Bound on the Distribution Shift: ~ Unlike the smoothly non-stationary setting, if

the underlying shift can be discrete and arbitrary, prior data may not contain any useful information
towards characterizing the shift. Therefore, avoiding domain knowledge may be inevitable when
setting the value for unless some other stronger assumptions are made.

C Extended Discussion on Related Work

In the on-policy RL literature, parameters other than the mean have also been ex{hRi] 21,

101, 27, 54, 4], and recent distributional RL methods extend this direction by estimating the entire
distribution of returns§2, 63, 7, 22, 23, 24, 75]. Our work builds upon many of these ideas and
extends them to the off-policy setting.

In the off-policy RL setup, there is a large body of literature that tackles the off-policy mean estimation
problem [/1, 83]. Some works also aim at providing high-con dence off-policy mean estimation
using concentration inequalitie8]], 53] or bootstrapping92, 40, 51]. Several recent approaches
build upon a dual perspective for dynamic programmig [LO0, 64] for both estimating and
bounding the mearb[, 104, 45, 95, 25, 35]. However, these methods are restricted to domains
with Markovian dynamics and full observability. Some works have also focused on estimating the
mean return in the setting where states are partially obseB&®@%, 48] or when there is non-
stationarity [L6, 17, 50, 66]. Recent work by Chandak et 4lL8] also looks at (high-con dence)
off-policy variance estimation. Our work extends these research directions by tackling these settings
simultaneously, while also providing a general procedure to estimate and obtain high-con dence
bounds forany parameter of the distribution of returns. Particularly, UnO is a single, uni ed, and
universal procedure that can be used to mitigate the complexity associated with estimating different
parameters for different domain settings.

A popular RL method that has similar name to UnO isltheversal value function approximator
(UVFA) by Schaul et al[77]. However, UVFA is fundamentally different from UnO: UVFA
estimategxpectedeturnE[G ] from a state given any desired goal. By comparison, UnO estimates
any parameter of the retufd for a single “goal”. Recent work by Harb et §12] and Faccio et al.

[33] propose using supervised learning to estimate parametric models that carrepegsantation

of a policy to the corresponding distribution & . By training over a given distribution of policies,

new policies in the test set can be evaluated without using new data. By comparison, UnO does
not requires any parametric assumptions or any train-test distribution. Further, UnO also provides
high-con dence bounds for all the parameters of the return distribution.

18



D Proofs for Theoretical Results

The main results in this paper are for the setting where both the evaluation and the behavior policies
have the same observation set. In the following, we present generalized results where the available
observations®, for the evaluation policy can be different from the behavior policy's observatns,
Further, for notational ease, in the main paper we had focused only on nite sets. In the following,
we present a more general setting where states, actions, observations, and rewards are all continuous.
Let ,:S O! ( ®) be the distribution ove®, conditioned on state 2 S and observation

02 O, which determines how the observatid®sre generated.

Let D = (Hj)L; be the available observed trajectories, where e&th contains

(Go; Ag; (AgjOo);Ro;®¢;:::). Note that when the random variabl®s= O = S, we recover

a standard fully observable MDP setting. By comparigén,is the random variable corresponding

to the complete trajector§Sy; Op; ®g; Ag; Ro; S1;01; @1;:::) under any policy . Of courseH is
unknown. To make the dependence between a trajebt@ryd and its associated retufh and
importance ratios explicit, we use the shorthargfh) and (h) to denote the return and importance
ratios for the full trajectonh, respectively. To tackle this generalized setting, we also generalize the
support assumption introduced earlier,

Assumption 1. The seD contains independent (not necessarily identically distributed) observed
trajectories generated using@ )., , such that for some (unknowh)> 0, ( (ajo) < ") =)

Theorem 1. Under Assumptiod, F,, is an unbiased and uniformly consistent estimatdf of That

'S h o

8 2R; Ep Fo() =F () sup Fo() F () *o
2R

Proof. This theorem has two results: unbiasedness and consisteﬁgy dherefore, we break the
proof into two parts.

Part 1 (Unbiasedness). V\ge begin by expandin% for aZny 2 R using the de nition of the CDF.

F()=Pr(G )= p(G = x)dx = P(H = h)ltgn)= xgdh dx; (8)
1 1 H
where we used the fact that the probability density of the re@urrbeingx is the integral of the
probability densities of the trajectoriéswhose return equabs. Therefore, as the integrands in
(8) are nite and non-negative measurable functions, using Tonelli's theorem for interchanging the
integrals, 8) cazn be expressed azs, -

FO= pH =M digmexgtd dn= pH =) gy o dh (9)

where the last term follows because the outpui(df) is a deterministic scalar givédnand thus the
indicator function can be one for at most a single value less thand where the red color is used
to highlight changes. Next, using Assumptibto change the support of the distribution(8) and
using import%nce weights we obtain, 2

F = H =h) 1 dh = H =h
() ! p( ) ligiy o y n( )p(H -
To simplify (10), we recursively use the fact thptX;Y ) = p(X)p(YjX) and note that under a
given policy the probability density of a trajectory with partial observations and non-Markovian
structure is
p(H = h) = p(so) P(00jSo) P(80]j0o; So) P(&0jSo; Oo; Bb; )
TY 1

H =h
p(ihg 1fg(h) g dh: (10)

p(rijhi)p(si+1 jhi)p(0i+1 jSi+1 ; hi)P(6i+1 JSi+1 ; O+1 5 i)
i=0 |

P(@i+1jSi+1;0+1;6+1;hi; ) p(rriht); (11)
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where conditioning on emphasizes that each action is sampled usingndh; represents the
trajectory of all the states, partial observations, and actions up to timé. steprefore, usingl1),
the ratio betweep(H = h) andp(H = h) can be written as,

P(H =h) _ p(a0jSo;00;60; ) ¥ * p(aiss jSis1 ;01 ;6is1;hi; )

P(H =h) ~ p(aoiso;00;60; ) o P(&+1iSi+1 ;041 ;641005 )
_ YV (aje)
o (&jo)
= (h): (12)
Combining (L0) and (2),
z
F()= ’ p(H =h) (h) Lligm) o dh (13)

Finally, it can be shown that our proposed estiméigiis an unbiased estimator Bf by taking the
expected value df,,

. " #
h i 10
Ep r‘An() = Ep n i 1fGi g
i=1
1L X h i
iy Eb i lig, ¢
i=1
1
= = p(H ; = h) (h) ligm) g dh
n izt H
@ 1%
== F()
i=1
=F (); (14)

where (a) follows from13), which holds for any behavior policy that satis es Assumptiof.

Note: H obH were invoked only for the purposes of the proof. Notice that the proposed estimator,

Fo( )= % in=1 i lig, ¢ ,onlydepends on the quantities available in the observed trajectory

(Hi)L,; fromD.

Part 2 (Uniform Consistency). For this part, we will rst show pointwise consistency, i.e., for

any ,Fn( ) ™% F (), andthen we will use this to establishiformconsistency, as required. To
do so, let

Xi= 1fGi g -

From Assumptiorl, we know that trajectories are independent and tifajo) " when (aje) > 0.
This implies that the denominator in the IS ratio is bounded below wtfaje) 6 0, and hence
theX;'s are bounded above and have a nite variance. Further, as establisfiet),ithe expected
value ofX; for all i equalsk ( ). Therefore, using Kolmogorov's strong law of large numbé&g [
Theorem 2.3.10 with Proposition 2.3.10],
" #
X X
f()= 20 X MBS0 X =F () 1)

n i=1 i=1

In the following, to obtain uniform consistency, we follow the proof for the Glivenko-Cantelli theorem

[38, 15, 79, 82] using the pointwise consistency of the off-policy CDF estimatgrestablished
in (15). The proof relies upon the constructionkfkey points such that the differencefn at
successive key points is bounded by a smalHowever, this would not be possible directly as there
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can be discontinuties/jumps i that are greater than. To tackle such discontinuties, we introduce
some extra notation, Formally, |&, 2 R,
X
F( )=Pr(G<)=F () Pr(G = ); F( )::ﬁ i lig,< g @ (16)
i=1

Then, using arguments analogous to the ones used$yri{ can be observed that
Fa( ) F () €))
Let ; > 0, and letk be any value more thatx ;. Let( )X, beK key points,

Gmin = 0< 1 2 K 1< k = Gmax;
which createK intervals such that for all2 (1;::;;K 1),
i
F(i) o F(o
Then by construction, if; 1 <
i i 1 1
F(C;) F(Cia K T=K<l: (18)

Intuitively, asF is monotonically non-decreasin,8) restricts the intermediate values for any
F ( ), to be within an ; distance of the CDF values at its nearby key points. Notice the role of
here: it would not have been possible to bound difference betweén) andF ( ; 1) by ; as
there could have been “jumps' of value greater thaim F . However, and can be used to
consider key points right before and after any jumpin which ensures that we can always construct
sequence of key points such tifat( ; ) F ( ; 1) isinstead bounded by .

For the CDF estimates at the key points, let,
o}

n
= FaCi) FCD)Fa() F(y) 1
n iZ(T:‘:eIl(X " n( i) (i) FaCy) (i) (19)
From(15) and(17), asF,( ) andF,( ) are consistent estimators®f( ) andF (), respec-
tively, and since the maximum is over a nite set itg}, it follows thatasn ! 1,

n B (20)
Forany ,let ; ; and ; be suchthat; ; < . Then,
Fal) F () Fa(y) F(i
I-_An(i) F(i)"' 1, (21)

where the last step follows usin@). Similarly,
Fa() F () Falin) F(;)
Fo(i1) F(i1) o (22)
Then, using21) and 2),8 2 R,
FaCi ) F (i) 1 Fa() F() Fa(i) F()+ g (23)
and thus usingl(9) and @3),

Fa() F () nt o (24)
Using @0), we obtain the following property of the upper bound 24)
nt 117 g (25)

Finally, since(24) holds for8 2 R and(25) is valid for any ; > 0, making ; ! 0 gives the
desired result,

sup Fo() F () P%o (26)
2R

O
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Variance-reduced estimation: It is known that importance-sampling-based estimators are subject
to high variance, which can often be limiting in practi@8]. A popular approach to mitigate variance

is to useweightedmportance sampling (WIS), which trades off variance for bias. Leveraging this
approach, we propose the following variance-reduced estinta{onf F ;

1 X
8 2R; Fn():= Pni i lig, g : 27)
i=1 1 =1
In the following theorem, we show thBt, is a biased estimator & , though it preserves consistency.
Property 1. Under AssumHotiorl, iFn may be biased but is a uniformly consistent estimatdt qf

8 2R; Ep Fn() 6 F ; sup Fn() F () P%oO
2R

Proof. Similar to the proof for Theorer, we break this proof in two parts, one to establish bias and
the other to establish consistencyF?;.f.

Part 1 (Biased): We prove this using a counter-example. het 1 and 61# 1, SO
h [ e '

1
8 2R; Ep Fno() =Ep P— ilig, g
ji=1 1 =1
= E23 1fG1 g
® p(H , = h) lign 4 dh
H 1
=F.()
8 F ()

where (@) follows analogously t@Y

Part 2 (Uniform Consistency):  First, we will establish pointwise consistency, i.e., for any
Fo( ) ™% F (), and then we will use this to establiahiformcolnsistency, as required.

1 Xt
8 2R, Fn( )= P+ iltg, g
j=1 i =1
O 1 1 |
X0 X0
= @1 ]A 1 ilfGi g
nj=l ni=l

P P
LetX, = 1 J-”:l jandY, = 21 ilig 4. Now, asF,( ) is a continuous function of
both X, andY,, if both (nlli{n Xn) * and(nlli{n Yn) exist then using the continuous mapping

theorem 96, Theorem 2.3],
1
8 2R; nI!llm Fn( )= nI!llm Xn nI!llm Yy (28)

Notice using Kolmogorov's strong law of large numberg,[Theorem 2.3.10 with Proposition 2.3.10]

that the term in the rst parentheses will almost surely converge to the expected value of importance
ratios, which equals on&{]. Similarly, we know from(15) that the term in the second parentheses
will converge toF ( ) almost surely. Therefore, both parenthetical term28f éxist, and thus

8 2R, Fa( )™ (1) MF ()=F () (29)

Now, similar to the proof for Theorerh combining(29) with arguments fron{16) to (26), it can be
observed that

sup Fo() F () P%o
2R
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P
Theorem 2. Under Assumptiod, for any 2 (0;1], if :<:l i , then the con dence band

de ned byF andF. provides guaranteed coverage fér. That is,

Pr 8;F () F () F.() 1

Proof. Let A; be the event that for the key point, CI ( i; i) F (i) Cl+( i; i), forall
i 2 (1;::;K). Let superscript denote a complementary event; then by the union bound, the total
probability of the bounds holding at each key point simultaneously is

X (a)
Pro VK, A =1 Pr (\K;A) =1 Pr [K A 1 Pr Af 1 ;(30)
i=1

where(a) holds because the conditions of the theorem assert that the sum of probabilities of the
bounds failing at each key point is at mostTherefore, using30),

Pr(8i2 (1;::5K); Cl (4;4) F (i) Cls(i; i) 21 (31)

Since by construction, at the key poirts)X; ;F ( ;)= Cl ( i; i)andF+( i)= Cl+( i; i),
it follows from (31) that

Pr(82(@:5K)Y;, F (i) F (i) Fe(i) 1 (32)

Using the monotonically non-decreasing property of a CDF, at any pdnR such that ;

i+1,weknowthat- ( ;) F () F ( i+x1). Therefore, when the bounds at the key points
hold, F at the key points can also be upper and lower bounéed: ;) F () Fi( j+1)-
Therefore, by 82) and the construct irgj, it immediately follows that

Pr 8;F () F () F.() 1
O

Theorem 3. Under Assumptiod, for any1 con dence band-, the con dence interval de ned
by and . provides guaranteed coverage fo(F ). Thatis,

Pr (F) + 1

Proof. Recall that the con dence bartel is a random variable dependent on the datd et Eg [ ]
represent expectation with respecr:]Ftothen repeatedly using the law of total probability,
[

Pr (F) + =Ef Pr (F) +F
:E,:hPr (F) +F 2F;F Pr F 2FF
+Pr (F) +F 62EF Pr F 62F_FI
EFhPr (F) +F 2F;F PrF 2F F

h i
@E PrF2FF

=Pr F 2F
(b)
1
where(a) follows from that fact thaF 2 F implies (F) +. Step(b) follows from

Theorenm?2.

Proof (Alternate). This proof is shorter but requires a theoretical constructsstaf sets of functions

That is, letF be any set of cumulative distribution functions @ndbe a set of such sets, such that
n )

F= FF 2F:
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In other wordsF is the set of CDFs which contains the true CBF, andF is the set ofall such
setsF. From Theoren®, we know that the con dence barkd containsF  with probability at least
1 . Therefore, it also holds that

P(F2F) 1
However, the ever(= 2 F ) implies that (F) + asF is contained in this speci &
used to construct and .. Therefore, it also holds that
Pr( (F) +) 1

O

Theorem 4. Under Assumption$ and 2, for any 2 (0; 1], the con dence band de ned U§/(2)
and FJEZ) provides guaranteed coverage 6f? . Thatis,

Pr8; F@C) FO() FP() 1

Proof. From Assumptior?, sup F(l)( ) F(z)( ) . Or equivalently,
2R

8 2R; FO() FOC) FOO)+ (33)
Using Theoren? for the bound obtained oR® for the rst domain,
Pr8;FP() FO() FP() 1 : (34)
Therefore, combining3d) and 34),
Pr 8; FY() FO() FU()+ 1o (35)
Then by the construct irv}, it follows from (35) that

Pr8; FP() FO() FP() 1

E Extended Discussion for UnO

E.1 Nuances for CDF Inverse and CVaR

For brevity, some nuances f&] 1( ) andCVaR (F,) were excluded from the main paper. We
discuss them in this section.

As discussed earlier in Rematkit is possible that,( ) > 1 for some 2 R due to the use of
importance weighting. Similarly, it is also possible tat ) < 1forall 2 R. Speci cally, if
F.( )< forall ,then it raises the question: how can one obtain an estimdte & )? To

resolve this issue, we use the following estimatoFoft( ) for UnO:
( ~n o
Py = min g2 (Gi))iLy Fn(9) ;i 9gstFa(g)
" max(Gi))iL, otherwise.

However, it is known from TheorerhthatF, is a uniformly consistent estimator Bf . Therefore,

the edge case th&, ( ) < forall cannotoccurinthelimitas!1 . Resolving this is required
mostly when the sample size is small.

Regarding CVaR, it is knowrt] that when the distribution of a random variable (whicl@is for
UnO) is continuous, then CVaR can be expressed as,

CVaR (F)=EG G F () ; (36)

24



and thus an off-policy sample estimator f86) can be constructed as,

1 X

CVaR (len) = - dleﬂ(G(i))G(i)lfG(i) 0 (lfn)g
i=1
However, for distributions that are not continuous, a more generic de nition for CVaBjs [
h i
: 1
CVaR (F ):'”J g —E max 0;g G : (37)

We extend the sample estimator by Broj3] for (37) and use the following off-policy estimator for
unO:
1 1 X 1
CVaR (Fn) = F %) =  dF.(Gg) max O;F, %) Gy
i=1

E.2 Optimizing Con dence Bands for Tighter Bounds:

Constructing= requires selecting key points for whichCl s are conH;)uted. If too many key points
are selected, then eachhas to be a very small positive value so thqil i , as required by
Theorem?2. This will make the con dence intervals wide at each key point. In contrast, if too few
key points are selected, then the con dence intervals at tlsawill be relatively tighter, but this will

not tighten the intervalbetweerthe ;'s due to the wayr andF. are constructed i(b). Further,

the overall tightness df is also affected by the location of eachand its respective failure rate.
Therefore, to get a tigh , we propose searching fora= K; ( )&, ;( i), that minimizes the
areaenclosed if. Thatis, let j+1 = a1 i, then the area enclosedmis

X
A():= (Cle(isasisa) CI (a5 0)) s

i=0

To avoid multiple comparisons], we rst partition D into Dyain andDeya. SubsequentyD i, is
used to search for as follows, and then is used withDgy, to obtainF .

=argmin A () (38)

s.t. Gmin < i <G max; i ; i O 8i 2 (1;::;K):
i=1
Remark 5. A global optimum of38) is not required—any feasiblecan be used witlD ¢4 to obtain
a con dence bandr . Optimization only helps by making the band tighter.

For our experimental results, when searchindor (38), we keep the number of key points,, xed
tolog(n), wheren is the number of observed trajectory sampleBinTo search for the locations

( ), and the failure rateg ;)X at each key point, we use the BlackBoxOptim libfaayailable

in Julia [11]. To perform this optimization, we construdt,i, using5% of data fromD, and construct

Deval Using the rest of the data. Following the idea by Thomas ¢8&l, when searching for
usingDyain, bounds for the key points ;)X are obtained as if the number of samples are equal

to the number of samples availableln,, (see Equatiof in the work by Thomas et a]91] for

more discussion on this). Instead of using a single split, one could potentially also leverage results by
Romano and DiCiccioq3] to use multiple splits; we leave this for future work.

E.3 Bound Specialization

In (38), was searched to minimize the akd ) enclosed withirF ( ), whereF ( ) represents
the CDF band obtained using the parameteiThis was done without any consideration of the
downstream parameterfor which the bounds would be constructed using@ ). Therefore, the

2https://github.com/robertfeldt/BlackBoxOptim.jl
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bandF () is tight overall, but need not be the best possible if only a speci ¢ paramétdrounds
are required using ( ).

For example, consider obtaining bounds @vaR . As can be seen from the geometric insight
in Figure3, bounds for CVaR are mostly dependent on the tightne$s(of near the lower tail.
Therefore, if one can obtai( ) that is tighter near the lower tail, albeit looser near the upper tail,
that would provide a better bound for CVaR as opposed to a Bgnjithat has uniform tightness
throughout.

To get atight= ( ) in such cases where there is a single downstream parameter of interest, we propose
searchingfora = K; ( )&;;( )X, thatdirectly optimizes for the nal parameter of interest
instead of the area enclosedHrr{ ). For example, if only the lower bound for(F ) is required,

then let

()= inf (F):

F2F ()
Next, the optimization usinDin can then be modeled as the following,
‘= arg max ()

s.t. Gmin < i <G max; 8i 2 (1;::;K);
X
i i 0 8i 2 (1;:5K);
i=1
This would result in  that when used witBD¢,, can be expected to provide the CDF band which
will yield the highest lower bound for (F ).

E.4 Approximate Bounds for Any Parameter using Bootstrap

In Algorithm 1, we provide the pseudo code for obtaining bootstrap-based bounds for any parameter
(F ). InLine 1,B dataset$D; )E, are generated frof® using resampling, and for each of these

resampled data se8, (weighted 1S-based) CDF estimags, )B., are obtained. In Line 3, sample

estimateg (F,; ), for the desired parameter(F ) are constructed using tt& estimated CDFs.

In Line 4, these sample estimates fdiF ) can be subsequently passed to the bias-corrected and

accelerated (BCa3p)]) bootstrap procedure to obtain approximate lower and upper bdunds . ).

Algorithm 1: Bootstrap Bounds for (F )

1 Input: DataseD, Con dence levell

2 BootstrapB dataset¢D; )P, and creatéF,; )2,
3 Bootstrap estimates (F,; ))&, using(F,; )&,
4 Compute( ; +)usingBCa( (F.; ), )

5 Return ( ; +)

E.5 Extended Discussion of High-Con dence Bounds for Any Parameter

Section4 of the main paper discussed how high-con dence boundsnd . can be obtained for

any parameter (F ) using the con dence banB . Speci cally, in Figure3, geometric insights

for obtaining the analytical form of the bounds for the mean, quantile, and CVaR were discussed.
Extending that discussion, FiguBeprovides geometric insights for bounding other parameters,
namely variance, inter-quantile ranges, and entropy, in the off-policy setting.

An advantage of having the CDF baRdis that it can permit bounding other novel parameters that
might be of interest. While analytical bounds using geometric insights, as discussed for a number of
popular parameters, should also be the rst attempt for the desired novel parameter, it may be the case
that such geometric insight cannot be obtained. In such cases, & @aF be directly parameterized

using a spline curve, or a piecewise non-decreasing function that is constrained to beFwithin
Depending on how rich this parameterization is, it may be feasible to use a black-box optimization
routine and obtain a globally optimBl that minimizes (maximizes) the desired parametgt). If

not feasible, an approximate bound can be achieved by using the best found local optima.
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F Empirical Details

F.1 Domain Details

In this section, we discuss domain details and hownd were selected for these domains.
The code for the domains, baselin®4,[18], and the proposed UnO estimator can be found at
https://github.com/yashchandak/UnO

Recommender System: Systems for online recommendation of tutorials, movies, advertisements,
etc., are ubiquitous3g, 88]. In these settings, it may be bene cial to fully characterize a customer's
experience once the new system/policy is deployed. To abstract such settings, we created a simulated
domain where the user's interest for a nite set of items is represented using the corresponding item's
reward.

Using an actor-critic algorithm8p], we nd a near-optimal policy , which we use as the evaluation
policy. Let ™4 pe a random policy with uniform distribution over the actions (items). Then for an

= 0:5, we de ne the behavior policy (ajs) =  (ajs) + (1 ) "ad (ajs) for all states and
actions.

Gridworld: ~ We also consider a standard continuous-state Gridworld with partial observability
(which also makes the domain non-Markovian in the observations), stochastic transitions, and eight
discrete actions corresponding to up, down, left, right, and the four diagonal movements. The
off-policy data was collected using two different behavior policigsand ,, and the evaluation
policies for this domain were obtained similarly as for the recommender system domain discussed
above. Particularly, using = 0:5, we de ne i(ajo) = (aj0)+(1 ) "ad (agjo) for all states

and actions. Similarly, ; was de ned using = 0:75.

Diabetes Treatment: This domain is modeled using an open source implementatiod pf the

U.S. Food and Drug Administration (FDA) approved Type-1 Diabetes Mellitus Simulator (TLDMS)
[59] for the treatment of type-1 diabetes. An episode corresponds to a day, and each step of an
episode corresponds to a minute iniasilico patient's body and is governed by a continuous time
nonlinear ordinary differential equation (ODEY]. In such potentially critical medical applications,

it is important to go beyond just the expected performance and to characterize the risk associated
with it, before deployment

To control the insulin injection, which is required for regulating the blood glucose level, we use a
policy that controls the parameters abasal-bolus controllerThis controller is based on the amount
of insulin that a person with diabetes is instructed to inject prior to eating a Bjeal [

current blood glucose target blood glucosgr meal size
CF CR '’

where “current blood glucose” is the estimate of the person's current blood glucose level, “target
blood glucose” is the desired blood glucose, “meal size” is the estimate of the size of the meal the
patient is about to eat, ar@R 2 [CRyin; CRmax] andCF 2 [CFnin; CFnax] are two parameters

of the controller that must be tuned based on the body parameters to make the treatment effective.
We designed an RL policy that acts on the discretized space of the pararGd&easdCF, for the

above basal-bolus controller. Behavior and evaluation policies were selected similarly as discussed
for the recommender system domain.

injection=

F.2 Extended Discussion on Results for Stationary Settings

The main results for the stationary setting are provided in Figurithe main body. In this section,
we provide some additional discussion on the observed trends for the bounds.

Notice in Figure4 that UnO-CI bounds for the variance can require up to an order of magnitude
less data compared to the existing bound for the variab&e This can be attributed to the fact that
Chandak et al.18] construct the bounds usifig] G 2] E[ G ]?, where it can be observed that the
second term depends quadratically orThis makes the variance of that term effectively “doubly
exponential” in the horizon length. This does not happen in the CDF-based approach as the bounds at
any key point depend orE[ 1g< ]), which does not have any higher powers of
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Another thing worth noting in Figuré is that not only the bounds for different parameters, but even

the upper and lower bounds for the same parameter converge at different rates (especially for smaller
values ofn). Therefore, there are two particular trends to observe: (a) how close the bounds are to the
true value at the beginning, and (b) how quickly they improve. Both of these depend on the direction
for which clipping plays a major role and also how the bounds depend on the tails. For example, for
the mean, as the distributions are right skewed (because evaluating pdieynear-optimal policy),

the bounds on the CDF are clipped more from the lower end (sd¢-thgt > = 0 always). Therefore,

since the upper bound on the mean depends on the lower CDF bound (see3figustrts close

to the estimate itself but the progress actually seems slow because shrinking CDFs bounds at any
speci ¢ F( ) from the lower end does not impact the bound until the point where clipping is not
required anymore.

For variance, the upper bound depends on both the upper bound on the lower tail and the lower bound
on the upper tail (see Figuf®, and these two bene t from clipping the least and also converge the
slowest. In contrast, the lower bound for variance depends on the upper bound on the upper tail
and the lower bound on the lower tail, which are clipped immediately to be below 1 and above 0,
respectively. AppendiB.1 (knowledge 0iGnin , Gmax ) and Fig6 provide more intuition on this.
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